Changes
8b
6.
(a)p = Smith was the murdererq = Jones was lyingr = Jones met Smith last night{|s = murder took place after midnight! P1: -p || . -q ⊃ rP2: r ∨ -s ⊃ p || P3: -p$. q ⊃ -sC: p|Thus, does (-|T || T || F|p.-q ⊃ r) . (r∨-s ⊃ p) . (-p.q ⊃ -s) imply p?|Say p = F || . To make P3 true, q = T and s = F || F|}. This makes P2 false, so we cannot make the antecedent true. Thus the premises taken together do imply the conclusion.
(b)
p = trains stop running
q = airline prices will increase
r = buses reduce their fares
t = buses lose customers
P1: p ⊃ q
P2: -p ⊃ r
P3: q ⊃ -t
C: r ⊃ t
To make conclusion false, we must set r = T and t = F. P2 and P3 will always be true, regardless of what values p and q take on. Thus it is possible for P1 to be true as well (p = q = T, for example), and the consequent can be false while the antecedent is true. Thus the premises taken together do not imply the conclusion.
7.
{|
! p || q || r || p .q⊃r || p∨q⊃r || q$pp⊃(q⊃r)|| q⊃(p⊃r) || (p⊃r).(q⊃r) || (p⊃r)∨(q⊃r)
|-
|T || T || T || T || T || T || T || T || T
|-
|T || T || F || F || F || F || F || F || F
|-
|T ||F || T || T || T || T || T || T || T
|-
|T ||F || F || T || F |}(c){|! p T || q T || p$q F || (p$q)$pT
|-
|F || T || T || T ||T || T || T || T || T
|-
|F || T || F ||T || F || T || T || F || T
|-
|F || F || T || T || T || T || T || T || T
|-
|F || F || F || T || T || T || T || T || T
|}
{|
! p || q || r || r⊃p.q || r⊃p∨q || (r⊃p).(r⊃q) || (r⊃p)∨(p$qr⊃q)$r
|-
| T || T || T || T || T || T || T
|-
| T || T || F || T || T || T || T
|-
| T || F || T || F || T || F || T
|-
| T || F || F || T || T || T || T
|-
| F || T || T || F || T || F || T
|-
| F || T || F || T || T || T || T
|-
| F || F || T || F || F || F || F
|-
| F || F || F || T || T || T || T
|}
Thus we can see that #1 is equivalent to r⊃p.q and #2 is equivalent to r⊃p∨q 8. (ea)
{|
! p || q || r || φ(p⊃rp,p,p) || (p⊃r)$q
|-
| T || T || T ||
|-
|}
{|
! p || p || r q || φ(p⊃r) || (p⊃p) . (p⊃rq,p,q)
|-
| T || T || T ||
|-
|-
| F || F T || T ||
|-
| F || F || F || |}(b){|! p || r || q || (r⊃q) || (p⊃q) || (r⊃q) . (p⊃q)|-| T || T || T || |-| T || T || F || |-| T || F || T || |-| T || F || F || |-| F || T || T || |-| F || T || F || |-| F || F || T || |-| F || F || F || |}(c){|! p || r || q || (p⊃f(p,q,p)) || (q⊃f(p,q,p)) || (p⊃f(p,q,p)) . (q⊃f(p,q,p))|-| T || T || T || |-| T || T || F || |-| T || F || T || |-| T || F || F || |-| F || T || T || |-| F || T || F || |-| F || F || T || |-| F || F || F || |}(d){|! p || r || q || ((p⊃q)⊃r) || ((q⊃p)⊃r) || ((p⊃q)⊃r) . ((q⊃p)⊃r)|-| T || T || T || |-| T || T || F || |-| T || F || T || |-| T || F || F || |-| F || T || T || |-| F || T || F || |-| F || F || T || |-| F || F || F ||
|}
{|
! s p || t φ(q,p,q) || u q || φ(s#t) || p,φ(s#tq,p,q)#u || t#u || s#(t#u,q)|-| T || T || T || |-| T || T || F || |-| T || F || T ||
|-
| T || F T || F T || T
|-
| F T || T || T F || F
|-
| F || T || F T || F
|-
| F || F || T || |-| F || F || F || T
|}